鐶琪屰渴股份有限气司
Hershey Valve Co．，Ltd．
435 台中市梧棲區鎮經二路16號
No．16，Jing 2nd Rd．，Wuchi，Taichung， 435 Taiwan，R．O．C．
Tel ：＋886－4－2659 5377 Fax ：＋886－4－2659 5288
Http ：／／www．hershey．com．tw
E－mail ：info＠hershey．com．tw
CN (UL) WRAS NSF LPCB LPCB

Company History

Hershey Valve Co.Ltd. was found in Chingshui, Taichung, Taiwan.
Moved to Kwanlien industrial District, Wuchi, Taichung, Taiwan.

USA and Canada became the major export markets. Japan became the most important export country in Asia.

Korean market was developed.

BlazeMaster ${ }^{\circledR}$ CPVC fire sprinkler system was certificated by LPCB (UK). set up to develop Taiwanese markets.

Taiwan factory was awarded SGS ISO 9002 certification.
Valve products were approved by NSF International.
Shanghai factory was awarded SGS ISO 9002 certification.
Began manufacturing SCH40/80 UPVC, SCH40/80 CORZAN® CPVC and SDR 13.5 BlazeMaster® ${ }^{\circledR}$ CPVC piping systems in Taiwan Wuchi No. 2 factory.

USA Lubrizol (BF Goodrich) authorized Hershey Valves as the exclusive licensee of FlowGuard ${ }^{\circledR}$ CPVC piping system.

SCH40 FlowGuard ${ }^{\circledR}$ CPVC hot and cold water distribution system and SCH40 clear PVC piping system came on line.

Hershey Valve Taiwan was awarded LPCB ISO 9002.
BlazeMaster ${ }^{\circledR}$ CPVC fire sprinkler system was approved by National Fire Administration Ministry of Interior in Taiwan.

Hershey Taichang factory was established in China.
BlazeMaster ${ }^{\circledR}$ CPVC material obtained WRAS approval. CORZAN® 4910 CPVC sheet obtained FM approval.

Hershey BlazeMaster ${ }^{\circledR}$ fire sprinkler fittings were listed by UL (Underwriters Laboratories Inc.).

Hershey Taiwan factories were consolidated and moved to Taichung Chungkang Export Processing Zone and it serves as Hershey Group Global Headquarters.

Hershey Taiwan factory was awarded LPCB ISO9001:2008

Design ，Installation and Product Specification UPVC Industrial Piping System

UPVC Industrial Piping System

System Description

UPVC has been utilized for a long time, it becomes the most general specified thermoplastic material. Overall UPVC has superior basic properties; it has good mechanical strength, chemical resistance and weatherability. As the UPVC has the largest volume of vinyl plastic family, it is exceptionally economical in cost.

Basic Physical Properties

Physical Property	Metric units	Imperial units	Test Condition	Standard
Cell Classification	12454			ASTM D1784
Specific Gravity	$1.35 \sim 1.40$		$23^{\circ} \mathrm{C}$	ASTM D792
Tensile Strength	$50 \mathrm{~N} / \mathrm{mm}^{2}$	7200 psi	$23^{\circ} \mathrm{C}$	ASTM D638
Flexural Strength	$63 \mathrm{~N} / \mathrm{mm}^{2}$	9,200 psi	$23^{\circ} \mathrm{C}$	ASTM D790
Modulus of Elasticity in Tension	$2,758 \mathrm{~N} / \mathrm{mm}^{2}$	400,000 psi	$23^{\circ} \mathrm{C}$	ASTM D638
Heat Deflection Temp	$70^{\circ} \mathrm{C}$	$158{ }^{\circ} \mathrm{F}$	$264 \mathrm{psi}, 23^{\circ} \mathrm{C}$	ASTM D648
Softening Temp.(Vicat)	$76^{\circ} \mathrm{C}$	$169{ }^{\circ} \mathrm{F}$	Loading 50 NN	ASTM D1525
Izod Impact (Notch)	$40 \mathrm{~J} / \mathrm{m}$	$0.75 \mathrm{ft}-\mathrm{lb} / \mathrm{in}$	$23^{\circ} \mathrm{C}$	ASTM D256
Coefficient of Thermal Expansion	$6 \times 10^{-5} \mathrm{~cm} / \mathrm{cm} \cdot{ }^{\circ} \mathrm{C}$	$3 \times 10^{-5} \mathrm{in} / \mathrm{in} \cdot{ }^{\circ} \mathrm{F}$		ASTM D696
Flammability	V0			UL-94 (Tested, not listed)
Maximum Operation Temperature	$55^{\circ} \mathrm{C}$	$131{ }^{\circ} \mathrm{F}$		

Note : Data presented are typical values.

General Applications

- Acid /alkaline chemicals transportation systems
- Pure water transportation systems
- Salt water transportation systems
- Drinking water transportation systems
- Irrigation Water transportation systems
- Chemical waste transportation systems
- Environmental engineering general piping systems
- Air conditioning chilling water supply/return piping systems

Applied Industries

－Electroplating factory
－Electronic industry plant
－Steel industry plant
－Power plant
－Food factory
－Pharmaceutical Plant
－Hospital

Product Advantages

Chemical Resistance

－UPVC piping systems have good chemical resistance，especial in acids，bases and salts．

Electrical Resistance

－UPVC piping systems have very excellent insulating property．

High Strength

－UPVC products are highly resilient，tough and durable with high tensile and high impact strength．

Low Friction Loss

－The smooth interior surfaces of UPVC assure low friction loss and high flow rate．Additionally，since UPVC pipe will not rust，pit，scale，or corrode，the high flow rate will be maintained for the life of the piping system．

Easy Installation

－There are many joint methods，such as solvent cement，threaded，flanged，\＆hot air welding．

Low Thermal Conductivity

－UPVC pipe has a much lower thermal conductivity factor than metal pipe．Therefore， fluids being piped maintain a more constant temperature．In most cases，pipe insulation is not required．
－Chemical industry plant
－Semiconductor industry plant
－Nuclear power plant
－Paper mill
－Beverage factory
－Waste water treatment plant

Cost Effective

－UPVC piping system is light weight，convenient to handle，relatively flexible，and easy to install． These features lead to lower installation cost than other piping systems．

Light Weight

－UPVC pipe is light in weight（approximately one－half the weight of aluminum and one－sixth the weight of steel）reducing transportation， handling，and installation cost．

Maintenance Free

－Once an UPVC system is properly selected， designed，and installed，it is virtually maintenance free．It will not rust，pit，scale，corrode，or promote build－up on the interior．Therefore，years of trouble－free service can be expected when using UPVC piping system．

Long Life

－There is over 30 years of actual usage life of Hershey UPVC piping system in these fields．

Weatherability

Weatherability is defined as a material's ability to maintain its basic physical properties after prolonged exposure to sunlight, wind and rain/humidity.

Hershey UPVC has been blended with a titanium dioxide (TiO 2) and carbon black. TiO2 coupled with carbon black is widely recognized as an excellent ultraviolet blocking agent and helps to protect the polymer backbone from the effects of ultraviolet radiation. Therefore, Hershey UPVC piping system will be able to meet the requirements of most outdoor installations.

If the specific installation requires additional protection from UV exposure, Hershey UPVC piping system can be pained with common acrylic latex paint. Priming of the piping is not necessary prior to painting.

Abrasion Resistance

A piping system's resistance to abrasion is a function of many factors:

- Particle size and shape
- Particle concentration
- Velocities
- Design of the piping system

Hershey UPVC piping systems will usually outperform metal when transporting abrasive media and have been used successfully in many abrasive industrial applications.

One widely referenced test method is the Taber Abrasion Test, in which the weight loss of a material is measured after being exposed to an abrasive wheel for 1000 cycles. While the Taber test cannot predict actual performance of a material to a given application, it does provide a relative measure to compare materials.

TABER ABRASION TESTER (Abrasion Ring CS-10, Load 1 kg)

Material	Weight loss (mg/1000 cycles)	Material	Weight loss (mg/1000 cycles)
Nylon 6-10	5	CTFE	13
UHMW PE	5	PS	$40-50$
PVDF	$5-10$	Steel (304 SS)	50
PVC (rigid)	$12-20$	ABS	$60-80$
PP	$15-20$	PTFE	$500-1000$
CPVC	20		

Properties Comparison of Commonly Used Piping Materials

	UPVC	PP	HDPE	ABS	GIP＊	SS＊
Joint	Solvent welding	Heat melted welding	Heat melted welding	Solvent welding	Threading or welding	Threading or welding
Life	Long	Middle	Middle	Middle	Short	Very long
Friction loss	Low	Medium	Medium	Low	High	Low
Chemical resistance	Excellent	Good	Good	Fair	Bad	Good
Thermal conductivity	Low	Low	Low	Low	High	High
Maximum operation temperature $\left({ }^{\circ} \mathrm{C}\right)$	55	80	70	70	400	400
Earthquake resistance	Good	Good	Good	Good	Bad	Bad
Impact resistance	Good	Excellent	Excellent	Excellent	Good	Vary
Operating pressure	High	Medium	Medium	Medium	High	Vary
Weatherability	Good	Bad	Bad	bad	Good	Excellent
Maintenance	Easy	Difficult	Difficult	Easy	Difficult	Easy
Installation	Easy	Difficult	Difficult	Easy	Difficult	Difficult
Cost	Low	Medium	Medium	Medium	Low	High
Specific gravity	1.4	0.91	0.95	1.0	7.9	7.9

Note ：1．＊GIP ：Galvanized Iron Pipe，SS ：Stainless Steel
2．Information provided in the Table is for reference only．

Product specification description

UPVC piping system products are manufactured by high quality PVC compound without plasticizer(DOP). All UPVC materials meet ASTM D1784 requirements.

Pipe :

UPVC pipe meets ASTM D1785 SCH 40 and SCH 80 requirements.

Fittings:

UPVC threaded fittings meet ASTM D2464, UPVC SCH 40 socket fittings meet ASTM D2466, and UPVC SCH 80 socket fittings meet D2467.

Cleaners (Primer) and Solvent Cements :

Socket fittings and pipes are suggested to be jointed by cleaner (primer) and solvent cements. The procedure of application should follow ASTM D2855 standard.

Marking :

All pipes and fittings are requested to bear manufacturing company name or logo , production date, material ASTM standard.

Referenced Standards

ASTM D1784 Standard Specification for Rigid Poly (Vinyl Chloride) (PVC) Compounds and Chlorinated Poly (Vinyl Chloride) (CPVC) Compounds

ASTM D1785 Standard Specification for Poly (Vinyl Chloride) (PVC) Plastic pipe, Schedule 40, 80 and 120
ASTM D2464 Standard Specification for Threaded Poly (vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 80 ASTM D2466 Standard Specification for Poly (Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 40

ASTM D2467 Standard Specification for Poly (Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 80
ASTM D2564 Standard Specification for Solvent Cements for Poly(Vinyl Chloride) (PVC) Plastic Piping Systems
ASTM F402 Standard Practice for Safe Handling of Solvent Cements, Primers, and Cleaners Used for Joining Thermoplastic Pipe and Fittings

ASTM D2855 Standard Practice for Making Solvent-Cemented Joints with Poly (Vinyl Chloride) (PVC) Pipe and Fittings

ASTM F656 Specification for Primer for Use in Solvent Cement Joints of Poly (Vinyl Chloricle) (PVC) Plastic Pipe and Fittings

Engineering Information

UPVC Pipe Pressure Rating

Size	OD（inch）	SCH 80		SCH 40	
		Water Pressure Rating	Water Pressure Rating	Water Pressure Rating	Water Pressure Rating
		$\mathrm{kg} / \mathrm{cm}^{2}$	psi	$\mathrm{kg} / \mathrm{cm}^{2}$	psi
1／2＂	0.840	59.76	850	42.18	600
3／4＂	1.050	48.51	690	33.75	480
$1 "$	1.315	44.29	630	31.64	450
1－1／4＂	1.660	36.56	520	26.01	370
1－1／2＂	1.900	33.04	470	23.2	330
$2 "$	2.375	28.12	400	19.69	280
2－1／2＂	2.875	29.53	420	21.09	300
$3 "$	3.500	26.01	370	18.28	260
4＂	4.500	22.5	320	15.47	220
5＂	5.563	20.39	290	13.36	190
$6 "$	6.625	19.69	280	12.66	180
8＂	8.625	17.58	250	11.25	160
10＂	10.750	16.17	230	9.84	140
12 ＂	12.750	16.17	230	9.14	130
$14 "$	14.000	15.47	220	9.14	130
16＂	16.000	15.47	220	9.14	130
18＂	18.000	15.47	220	9.14	130
20＂	20.000	15.47	220	8.44	120
$24 "$	24.000	14.76	210	8.44	120

Note ：

1．Pressure rating applies for water at $73^{\circ} \mathrm{F}$ ．For temperature greater than $73^{\circ} \mathrm{F}$ see derating factors．For fluids other than water the full pressure rating may not apply，see chemical resistance table．

2．Schedule 80 pipe operating above $130^{\circ} \mathrm{F}$ should not be threaded．Use flanged joints，or Victaulic coupling where occasional disassembly is necessary．

3．All dimension of SCH40 should never be threaded，SCH80 pipe if diameter 6 ＂and greater also should never be threaded．
valve

Temperature Derating Factors - UPVC Pipe

Temperature Correction Factors - Pipe

Operation Temperature		Factor	
${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	PVC	CPVC
70	21	1.00	1.00
80	27	0.90	0.96
90	32	0.75	0.92
100	38	0.62	0.85
110	43	0.50	0.77
115	16	0.40	0.74
120	19	0.45	0.70
125	52	0.32	0.66
130	54	0.30	0.62
140	60	0.22	0.55
150	66	${ }^{*}$	0.47
160	71	$*$	0.40
170	77	$*$	0.32
180	82	$*$	0.25
200	93	NR	0.18
210	99	NR	$*$

Pressure Ratings for Flanged Systems

Flanged systems of any size should not exceed 150 psi working pressure.

Pressure Ratings for Threaded Systems

Threaded systems are derated to 50% of the pressure rating for the piping at the system operating temperature.

Friction Loss in Pipe

A great advantage that UPVC pipe enjoys over its metallic competitors is a smooth inner surface which is resistant to scaling and fouling．This means that friction pressure losses in the fluid flow are minimized from the beginning and do not significantly increase as the system ages，as can be the case with metal pipes subject to scaling．

The Hazen－Williams formula is the generally accepted method of calculating friction head losses in piping systems．The values in the following fluid flow tables are based on this formula ano a surface roughness constant of $\mathrm{C}=150$ for 1 UPVC pipe．Surface roughness constants for other piping materials are given below：
$f=0.2083 \times\left(\frac{100}{d}\right)^{1.852} \frac{g^{1.852}}{d^{4.86555}}$
Where $f=$ friction head in feet of water per 100 feet of pipe
$d=$ inside diameter of pipe in inches
$\mathrm{g}=$ flow rate in gallons per minute
$c=$ pipe surface roughness constant

Constant（C）	Type of Pipe
150	PVC／CPVC pipe，new－40 years old
$130-140$	Steel／cast iron pipe，copper new
125	Steel pipe，old
120	Cast iron，copper 4－12 years old
110	Galvanized steel；Cast iron，13－20 years old
$60-80$	Cast iron，worn／pitted

Friction Loss in Fittings

Friction losses through fittings are calculated from the equivalent length of straight pipe which would produce the same friction loss in the fluid．The equivalent lengths of pipe for common fittings are given below．

Equivalent Length of Pipe（Feet）＊

Nominal Size (in)	90° Standard Elbow	45° Standard Elbow	Standard Tee Run Flow	Standard Tee Branch Flow
$1 / 2$	1.5	0.8	1.0	4.0
$3 / 4$	2.0	1.1	1.4	5.0
1	2.6	1.4	1.7	6.0
$11 / 4$	3.8	1.8	2.3	7.0
$11 / 2$	4.0	2.1	2.7	8.1
2	5.7	2.7	4.3	12.0
$21 / 2$	6.9	3.3	5.1	14.
3	7.9	4.1	6.2	16.3
4	11.4	5.3	8.3	22.0
6	16.7	8.0	12.5	32.2
8	21.0	10.6	16.5	39.7
10	25.1	13.4	19.1	50.1
12	29.8	15.9	22.4	63.0

[^0]
Pressure Drop in Valves and Strainers

The equation for calculating pressure drop in this manner is:
$\Delta \mathrm{P} \cdot \rho=\frac{\mathrm{G}^{2}}{\mathrm{Cv}^{2}}$

Where: $\Delta \mathrm{P}=$ water pressure drop in psi
$G=$ maximum flow rate in gallons per minute
$\mathrm{Cv}=$ the valve flow coefficient
$\rho=$ specific gravity of fluids
Typical flow coefficients at fully opening for different valves and strainers are given below. Pressure drops for fluids other than water may be calculated by multiplying ΔP value with specific gravity of the fluid.

Valves	$1 / 2^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1^{\prime \prime}$	$1-1 / 4^{\prime \prime}$	$1-1 / 2^{\prime \prime}$	$2^{\prime \prime}$	$2-1 / 2^{\prime \prime}$	$3^{\prime \prime}$	$4^{\prime \prime}$	$5^{\prime \prime}$	$6^{\prime \prime}$	$8^{\prime \prime}$
MIP Ball	8	15	29	75	90	140	330	480	600	-	-	-
Double Union Ball	8	15	29	75	90	140	330	480	600	-	-	-
Single Union Ball	8	15	29	75	90	140	-	-	-	-	-	-
Swing Check	15	22	76	120	120	125	255	285	490	-	1050	1800
Butterfly	-	-	-	-	70	120	260	310	480	830	1000	2300
Diaphragm	6	6.5	11	14	32.5	54	110	150	250	-	-	-
Strainers (Clean)	$1 / 2^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1 "$	$1-1 / 4^{\prime \prime}$	$1-1 / 2^{\prime \prime}$	$2 "$	$2-1 / 2^{\prime \prime}$	$3 "$	$4 "$	$5 "$	$6 "$	$8 "$
Y Type	3.8	6.6	8.4	20	25	35	60	60	95	-	-	-
TType	6	9.5	29	-	40	55	-	125	155	-	-	-

Water Hammer Surge Pressure

Whenever the flow rate of liquid in a pipe is changed，there is a surge in pressure known as water hammer．The loner the line and the faster the fluid is moving，the greater the hydraulic shock will be． Water hammer may be caused by opening or closing a valve，starting or stopping a pump，or the movement of entrapped air through the pipe．The maximum water hammer surge pressure may be calculated from：
$\mathrm{P}_{\mathrm{wh}}=\frac{\rho \Delta V}{\mathrm{~g}_{\mathrm{c}}}\left[\frac{\rho}{\mathrm{g}_{\mathrm{c}}}\left(\frac{1}{\mathrm{~K}}+\frac{\mathrm{d}}{\mathrm{bE}}\right)\right]^{-1 / 2}$
where $\mathrm{Pwh}=$ maximum surge pressure， PSI
$\rho=$ fluid density（ $\mathrm{lb} / \mathrm{ft}^{3}$ ）
$\Delta V=$ change in fluid velocity（ft／s）
$g_{c}=$ gravitational constant（ $32.2 \mathrm{ft} / \mathrm{s}^{2}$ ）
$\mathrm{K}=$ bulk modulus of elasticity of fluid $\left(\mathrm{lb} / \mathrm{ft}^{2}\right) \mathrm{K}$ water $=43.2 \times 106 \mathrm{lb} / \mathrm{ft}^{2}$
$d=$ pipe inside diameter（inches）
$\mathrm{b}=$ pipe wall thickness（inches）
$\mathrm{E}=$ pipe material bulk modulus of elasticity（PSI）
The values in the following table are based on this formula at $73^{\circ} \mathrm{F}$ and the assumption that water flowing at a given rate of gallons per minute is suddenly completely stopped．The value for fluids other than water may be approximated by multiplying by the square root of the fluid＇s specific gravity．

The water hammer surge pressure plus the system operating pressure should not exceed 1.5 times the recommended working rating of the system．

In order to minimize hydraulic shock due to water hammer，linear fluid flow velocity should generally be limited to $5 \mathrm{ft} / \mathrm{s}$ ，particularly for pipe size of 6 ＂or larger velocity at system start－up should be limited to $1 \mathrm{ft} / \mathrm{s}$ during filling until it is certain that all air has been flushed from the system and the pressure has been brought up to operating conditions．

Air should not be allowed to accumulate in the system while it is operating．Pumps should not be allowed to draw in air．

Where necessary，extra protective equipment may be used to prevent water hammer damage．Such equipment might include pressure relief valve，shock absorbers，surge arrestors and vacum air relief valves．
Carrying Capacity and Friction Loss for Schedule 80 Thermoplastic

Carrying Capacity and Friction Loss for Schedule 40 Thermoplastic
（Independent variables：Gallons per minute and nirminal O．D．Dependent variables：Velocity，friction head and pressure drop per 100 feet of pipe，interior smooth．）

Gouton：Flow relocis＇s should not exeed 5 feet per second．JyC snd CFVC pipe carnot be s．sey for compressed air servce

Thermal Expansion and Thermal Stresses

General

It is important to consider thermal expansion when designing a system with Hershey UPVC pipe. Most thermoplastics have a coefficient of thermal expansion which is significantly higher than those of metals. The thermal expansion of a piping system subject to a temperature change can therefore be significant, and may need compensation in the system design. The expansion or contraction of thermoplastic pipe may be calculated from the following formula:

Thermal Expansion Formula
$\Delta \mathrm{L}=\mathrm{Lp} C \Delta \mathrm{~T}$

```
Where: \(\Delta \mathrm{L}=\) Change in length due to change in temperature (in.)
Lp = Length of pipe (in.)
\(\mathrm{C}=\) Coefficient of thermal expansion (in./in./ \({ }^{\circ} \mathrm{F}\) ) \(=3.3 \times 10^{-5} \mathrm{in} . / \mathrm{in} . / /^{\circ} \mathrm{F}\) for PVC
\(\Delta \mathrm{T}=\) Change in temperature \(\left({ }^{\circ} \mathrm{F}\right)\)
```

The thermal expansion and contraction of PVC and other piping materials is displayed below.

Expansion Loops and Offsets

As a rule of thumb, if the total temperature change is greater than $30^{\circ} \mathrm{F}\left(17^{\circ} \mathrm{C}\right)$, compensation for thermal expansion should be included in the system design. The recommended method of accommodating thermal expansion is to include expansion loops, offsets, or changes in direction where necessary in the system design.

An expansion loop schematic is presented here.

Change of Direction

Expansion Loop Formula

$$
L_{L}=\sqrt{\frac{3 E D \Delta L}{2 S}}
$$

Where：$L_{L}=$ Loop length（in．）
$E=$ Modulus of elasticity at maximum temperature（psi）
S＝Working Stress at maximum temperature（psi）
D＝Outside diameter of pipe（in．）
$\Delta L=$ Change in length due to change in temperature（in．）
Expansion loops and offsets should be constructed with straight pipe and 90° elbows which are solvent cemented together．If threaded pipe is used in the rest of the system，it is still recommended that expansion loops and offsets be constructed with solvent cement in order to better handle the bending stresses incurred during expansion．The expansion loop or offset should be located approximately at the midpoint of the pipe run and should not have any supports or anchors installed in it．Valves or strainers should not be installed within an expansion loop or offset．

Thermal Stresses

If thermal expansion is not accommodated，it is absorbed in the pipe as an internal compression．This creates a compressive stress in the pipe．The stress induced in a pipe which is restrained from expanding is calculated with the following formula：
$S=E C \Delta T$
Where：$S=$ stress induced in the pipe
$\mathrm{E}=$ Modulus of elasticity at maximum temperature
C＝coefficient of thermal expansion
$\Delta T=$ total temperature change of the system
Modulus of Elasticity and Working Stress for UPVC

Temperature		Modulus，E		Stress，S	
${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	psi	MPa	psi	MPa
73	23	400,000	2,758	2,000	14
90	32	372,000	2,565	1,500	10
100	38	352,000	2,427	1,300	9
110	43	336,000	2,316	1,000	7
120	49	316,000	2,179	800	5
130	54	300,000	2,068	600	4

Valve

Typical Recommended Maximum Support Spacing

Pipe Size (in.)	SCH80 -Temperature (${ }^{\circ} \mathrm{F}$)				SCH40-Temperature (${ }^{\circ} \mathrm{F}$)			
	60	80	100	120	60	80	100	120
1/2"	5	4.5	4.5	3	4.5	4.5	4	2.5
3/4"	5.5	5	4.5	3	5	4.5	4	2.5
$1{ }^{\prime \prime}$	6	5.5	5	3.5	5.5	5	4.5	3
1-1/4"	6	6	5.5	3.5	5.5	5.5	5	3
1-1/2"	6.5	6	5.5	3.5	6	5.5	5	3.5
$2 "$	7	6.5	6	4	6	5.5	5	3.5
2-1/2"	7.5	7.5	6.5	4.5	7	6.5	6	4
$3 "$	8	7.5	7	4.5	7	7	6	4
4"	9	8.5	7.5	5	7.5	7	6.5	4.5
$6 "$	10	9.5	9	6	8.5	8	7.5	5
8"	11	10.5	9.5	6.5	9	8.5	8	5
10"	12	11	10	7	10	9	8.5	5.5
12"	13	12	10.5	7.5	11.5	10.5	9.5	6.5
14"	13.5	13	11	8	12	11	10	7
$16 "$	14	13.5	11.5	8.5	12.5	11.5	10.5	7.5
18"	14.5	14	12	11	13	12	11	8
20	15.5	14.5	12.5	11.5	14	12.5	11.5	10
$24 "$	17	15	14	12.5	15	13	12.5	11

(Unit : Feet)

* Chart based on spacing for continuous spans and for unisulated line conveying fluids of specific gravity up to 1.00 .
* The pipe should not be anchored tightly by the support, but secured in a manner to allow for movement caused by thermal expansion and contraction. It is recommended that you use clamps or straps that allow pipe to remain away from the framing, thus reducing the noise generated when pipe is allowed to rub against wood.
* If normally working temperature usually keep above $120^{\circ} \mathrm{F}$, it is recommended to use CPVC piping systems.

Specific Gravity	1.0	1.1	1.2	1.4	1.6	2.0	2.5
Correction Factor	1.00	0.98	0.96	0.93	0.90	0.85	0.80

Band Hanger

Anchor Strap

Roller Hanger

Pipe Clamp

Pipe Clamp

Clevis Hanger

Roller Hanger

U－Bolt

Roller Stand

Installation Guides

General Installation Guides

Proper install of UPVC piping systems is critical to the performance of the system．A few sample guidelines should be followed to ensure long service life and safe operation．

Handling

Proper care should be exercised when transporting or installing Hershey UPVC piping to prevent damage．Hershey UPVC piping should be stored and shipped only with other non－metallic piping． It should not be dropped or dragged during handling，especially during extremely cold weather． The same treatment should apply to the handling of Hershey UPVC fittings．

Prior to actual installation，the pipe and fittings should be thoroughly inspected for cracks，gouges， or other signs of damage．Particular attention should be given to the inside surface of the part． While the outside surface may not exhibit damage，
improper handling can result in damage that appears only on the inside surface of the part．

Cutting

Lengths of pipe can be easily and successfully cut by following a few simple guidelines．Best results are obtained by using fine－toothed saw blades （16 to 18 teeth per inch）with little or no offset （ 0.025 ＂max．）．Circular power saws（ $6,000 \mathrm{rpm}$ ）or band saws（ $3,600 \mathrm{ft} . / \mathrm{min}$ ．）are recommended using ordinary hand pressure．Miter boxes or other guide devices are strongly recommended for manual operation to ensure square cuts．Burrs，chips，and dust should be removed following cutting to prevent contamination of the piping system and facilitate joining．

Joining Methods

Hershey UPVC piping can be installed using a
number of joining techniques. Solvent welding, flanging, and threading are the more common methods and are covered in greater detail in this section. Back welding of joints using hot gas welders is also covered in some detail. Less common joining methods are also possible with Hershey UPVC piping and fittings. Contact Hershey Sales rep. for assistance with less common joining methods.

Hanging/Laying of Pipe

Hershey UPVC piping can be installed above ground or buried underground. Methods to minimize stress on the piping as a result of installation are covered in detail below.

System Stress

Any metal or non-metal piping system is subject to stress-induced corrosion. As a result, special attention should be given to minimizing stress throughout the system. The total stress on a piping system includes not only the known pressure stress, but also stresses from sources such as expansion or installation. Expansion stresses can be minimized with expansion joints or loops. Installation stresses are minimized with careful installation techniques. Pipe and fittings should be properly prepared when joints are made up. Hangers and supports should be properly spaced to prevent sagging and
should not cut into the pipe or clamp it tightly, preventing movement. System components should not be forced into place.

Thermal Expansion

UPVC piping has the lowest coefficient of thermal expansion of any thermoplastic piping. However, thermal expansion will be greater than that of metal piping. Typically, expansion loops or offsets in the piping are designed to account for any thermal expansion. These design methods are covered in detail in page 15 Expansion joints can also be installed. Information on expansion joints can be obtained by contacting Hershey Valve sale rep.

Testing the Piping System

After the piping system is installed and any solvent cement is fully cured, the system should be pressure tested and checked for leaks using water. Testing using compressed air or inert gas is not recommended. All entrapped air should be allowed to vent as the system is filled with water. Water filling should occur at a velocity not more than $1 \mathrm{ft} /$ sec. After filling, the system should be pressured to 125% of the maximum design pressure of the lowest rated part of the system. Pressure should be held for no more than one hour while the system is checked for leaks.

Joining UPVC Pipe and Fittings - Solvent Cementing

Cutting

Hershey UPVC pipe can be easily cut with a ratchet cutter, wheel-type plastic tubing cutter, power saw, or fine-toothed saw. To ensure the pipe is cut square, a mitre box must be used when cutting with a saw. Cutting the pipe as squarely as possible provides the maximum bonding surface area.

Chamfering and Deburring

Burrs and filings can prevent proper contact between the pipe and fitting and may put undue stress on the pipe and fitting assembly. Burrs and filings must be removed from the outside and inside of the pipe. A chamfering tool or file is suitable for this purpose. A slight bevel should be placed at the end of the pipe to ease entry of the pipe into the socket and minimize the chances of
wiping solvent cement from the fitting. For pipe sizes 2 inches and larger a $10^{\circ}-15^{\circ}$ chamfer of $3 / 32$ " is recommended.

Fitting Preparation

Loose soil and moisture should be wiped from the fitting socket and pipe end with a clean, dry rag. Moisture can slow the curing, and at this stage of assembly excessive water can reduce the joint strength. The dry fit of the pipe and fitting should be checked. The pipe should enter the fitting socket easily $1 / 4$ to $3 / 4$ of the depth. If the pipe bottoms in the fitting with little interference, extra solvent cement should be used to prepare the joint.

Primer Application

Use primer conforming to ASTM F656. Primer
is needed to prepare the bonding area for the addition of the cement and subsequent assembly． It is important that a proper applicator be used． A dauber，swab or paintbrush approximately half the size of the pipe diameter is appropriate．A rag should not be used．Primer is applied to both the outside of the pipe end and inside of the fitting socket，redipping the applicator as necessary to ensure that the entire surface of both is tacky．

Solvent Cement Application

Use only solvent cement conforming to ASTM D2564．Solvent cement must be applied when the pipe surface is tacky，not wet，from primer．Joining surfaces must be penetrated and softened．Cement should be applied with a natural bristle brush or swab half the size of the pipe diameter．A dauber may be used to apply cement on pipe sizes below 2 inches．A heavy，even coat of cement should be applied to the outside of the pipe end，and a medium coat should be applied to the inside of the fitting socket．Pipe sizes greater than 2 inches should receive a second coat of cement on the pipe end．

Assembly

After cement application，for smaller pipe under 4＂should immediately be inserted into the fitting socket and rotated $1 / 8$ to $1 / 4$ turn until the fitting－stop is reached．The fitting should be properly aligned for installation at this time．The pipe must meet the bottom of the fitting socket． The assembly should be held in place for 10 to 30 seconds to ensure initial bonding and to avoid pushout．A bead of cement should be evident around the pipe and fitting juncture．If this bead is not continuous around the socket shoulder，it may indicate that insufficient cement was applied．In this case，the fitting should be discarded and the joint reassembled．Cement in excess of the bead may be wiped off with a rag．

Joining of Large Diameter Pipe

For 6 inch or larger diameter pipe，a pipe puller （come－along）is recommended to assemble the joint and hold it in place for the initial set time without applying excess force that may damage the pipe or fitting．This equipment should be set up prior to the start of priming so the assembly can happen quickly while primer and cement are still fluid．

Set and Cure Times

Solvent cement set and cure times are a function of pipe size，temperature，relative humidity， and tightness of fit．Drying time is faster for drier environments，smaller pipe sizes，high temperatures，and tighter fits．The assembly must be allowed to set，without any stress on the joint，per the time shown in the following tables． Following the initial set period，the assembly can be handled carefully avoiding significant stresses to the joint．

Extra care should be exercised when systems are assembled in extreme temperature conditions． Extra set and cure times should be allowed when the temperature is below $40^{\circ} \mathrm{F}\left(4^{\circ} \mathrm{C}\right)$ ．When the temperature is above $100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$ ，the assembler should ensure that both surfaces to be joined are still wet with cement before joining them．

Recommended Set Times

After a joint is assembled using solvent cement, it should not be disturbed for a period of time to allow for proper "setting" of the newly prepared joint. Recommended set times are as follows:

Average Initial Set Schedule

Ambient Temperature	$1 / 2^{\prime \prime}$ to $1 \frac{1 / 4 "}{}$	$1 \frac{1 / 2 "}{}$ to $2^{\prime \prime}$	$2 \frac{1 / 2 "}{}$ to $8^{\prime \prime}$	$10^{\prime \prime}$ to $15^{\prime \prime}$	$15^{\prime \prime}+$
$60^{\circ} \mathrm{F}$ to $100^{\circ} \mathrm{F}$	2 min	5 min	30 min	2 hrs	4 hrs
$40^{\circ} \mathrm{F}$ to $60^{\circ} \mathrm{F}$	5 min	10 min	2 hrs	8 hrs	16 hrs
$0^{\circ} \mathrm{F}$ to $40^{\circ} \mathrm{F}$	10 min	15 min	12 hrs	24 hrs	48 hrs

Note:

1. Initial set schedule is the necessary time to allow before the joint can be carefully handled. In damp or weather allow 50% more set time.
2. These figures are estimates based on laboratory tests using water; extended set times are required for economical applications. Due to the many variables in the field, these figures should be used as a general guide only.

Recommended Cure Times

After a joint is assembled using solvent cement, the cement must be allowed to properly "cure" before the piping system is pressurized. Recommended minimum cure times are shown below. These recommendations should only serve as a guide since atmospheric conditions during installation will affect the curing process. High humidity and/or colder weather will require longer cure times: typically add 50% to the recommended cure time if surroundings are humid or damp.

	1/2" - $1^{11 / 4 "}$		$1^{11 / 2}-2^{\prime \prime}$		$2^{1 ⁄ 2} 2^{\prime \prime}-8^{\prime \prime}$		10" - 15"	15"+
Ambient Temperature	$\begin{gathered} -160 \\ \text { psi } \end{gathered}$	$\begin{gathered} 160-370 \\ \text { psi } \end{gathered}$	$\begin{gathered} \hline-160 \\ \text { psi } \end{gathered}$	$\begin{gathered} 160-315 \\ \text { psi } \end{gathered}$	$\begin{gathered} -160 \\ \text { psi } \end{gathered}$	$\begin{gathered} 160-315 \\ \mathrm{psi} \end{gathered}$	$\begin{array}{r} \hline-100 \\ \text { psi } \end{array}$	$\begin{gathered} \hline-100 \\ \text { psi } \end{gathered}$
$60^{\circ} \mathrm{F}$ to $100^{\circ} \mathrm{F}$	15 min	6 hrs	30 min	12 hrs	90 min	24 hrs	48 hrs	72 hrs
$40^{\circ} \mathrm{F}$ to $60^{\circ} \mathrm{F}$	20 min	12 hrs	45 min	24 hrs	4 hrs	48 hrs	96 hrs	6 days
$0^{\circ} \mathrm{F}$ to $40^{\circ} \mathrm{F}$	30 min	48 hrs	1 hr	96 hrs	72 hrs	8 days	8 days	14 days

Note: These figures are estimates based on laboratory tests using water; extended set times are required for economical applications. Due to the many variables in the field, these figures should be used as a general guide only.

Back－Welding of Pipe Joints

Back－welding may be used to repair minor leaks in solvent a welding rod to fuse in the joint fillet while both rod and fillet are softened with hot air．

Before hot－air welding begins，the section of piping where the repair will be made must be emptied． Joints should not be welded with fluid still in the pipe．

All dirt and moisture should be wiped away from the joint to be repaired．Excess dried solvent cement around the joint should be removed with an emery cloth．Residual solvent cement may tend to scorch and burn during welding．If the joint to be welded is a threaded joint，excess threads in the joint area should be removed with a file in order to provide a smooth surface for welding．

If a speed tip will be used for back－welding，please contact BFGoodrich or Hershey Valve for relative information．

If welding will be done by feeding the rod manually，the following conditions and procedures should be used ：

The welding temperature should be approximately $550 \sim 600^{\circ} \mathrm{F}$ ．

The end of the welding rod should be inserted into the junction of the pipe and fittings，and the rod should be held at a 90° angle to the joint．The rod and base material should be preheated with
the welding torch $1 / 4$ to $3 / 4$ inch away from both the rod and the base material and fanning back and forth in the immediate welding area．while preheating，the rod can be moved up and down until it is soft enough to stick to the base．

When the materials are softened enough to fuse， the rod should be advanced by the application of a slight pressure．The fanning motion of the torch should be continued throughout the welding process．when the weld is finished，another inch of rod material should be lapped over the bead．

When large diameter pipe is welded，three beads may be required to fill the joint adequately，the first bead should be laid directly into the joint fillet，and the subsequent beads on either side of the first bead．

Flanging of UPVC pipe

Flanging can be used to provide temporary disassembly of a piping system or when it is not possible to make up solvent cemented joints at the assembly site．

Flanges are joined to the pipe by solvent cement or threaded joints．Refer to the sections on solvent cementing or threading of UPVC pipe for the proper techniques．

Flanged joints incorporate an elastomeric gasket between the mating faces to provide for a seal. The gasket selected must be full-faced and have a hardness of 55-80 durometer A. Typically, gaskets are $1 / 8$ " thick. The gasket material must be resistant to the chemical environment. Many manufacturers of gasketing materials supply this kind of information. The flanges should be carefully aligned and the bolts inserted through matching
holes. A flat washer should be used beneath each nut and bolt head. Each bolt should be partially tightened in the alternating sequence indicated in the patterns below. A torque wrench should be used for the final tightening of the bolts. The bolts should be tightened to the torque recommended in the table below in the same alternating sequence used previously.

Recommended Bolt Torque

Nominal Pipe Size	Number of Bolt Holes	Bolt Diameter (in)	Recommended Torque (ft-lbs)
$1 / 2-11 / 2$	4	$1 / 2$	$10 \sim 15$
$2 \sim 3$	4	$5 / 8$	$20 \sim 30$
4	8	$5 / 8$	$20 \sim 30$
6	8	$3 / 4$	$33 \sim 50$
8	8	$3 / 4$	$33 \sim 50$
10	12	$7 / 8$	$53 \sim 75$
12	12	1	$80 \sim 110$

Flage Bolt Tightening Patterns

Underground Installation Guidelines

References

These guidelines are based upon the following：
1．ASTM D2774
Standard Recommended Practice for Underground Installation of Thermoplastic Piping．

2．Industry Experience
For additional information and data，consult ASTM standards D2774，D2321，or F645．

Installation Procedures

This procedure will cover the typical steps encountered in underground installations：trench design，trench preparation，piping assembly，laying of pipe，and backfilling．

Trench Design

Width：The trench should be of adequate width to allow for convenient installation，but as narrow as possible depending on whether the piping will be assembled inside or outside of the trench．

Depth：The trench depth should be sufficient to place the pipe deep enough to meet frost，above－ground load，and any trench bedding requirements．

Frost：Piping at least 12 inches below the frost line．
Loads：Piping should be deep enough to keep external stress levels below acceptable design stress．Design stress will be determined by pipe size and operating
temperature and may be governed by various codes．

Bedding： 4 to 6 inches underneath piping，if necessary．

Trench Preparation

The trench bottom should be continuous，relatively smooth and free of rocks．If ledge rock，hardpan， boulders，or rocks that are impractical to remove are encountered，it will be necessary to pad the trench bottom to protect the piping from damage． 4 to 6 inches of tamped earth or sand bedding will be sufficient in such situations．

Piping Assembly／Placement

Piping may be assembled using conventional solvent cementing techniques either inside or outside of the trench depending on the specific installation requirements．Solvent cement usually requires at least 12 to 24 hours for the cemented joint to cure properly．During this critical curing process，every effort should be made to minimize the stress on any joints．As a result，the piping should not be moved during the curing period，nor should the pipe be backfilled， or otherwise constrained during curing．See the recommendations on joint curing time to determine the exact curing requirements for a specific installation．

If the piping was assembled outside of the trench， the pipe may be placed into the trench after proper curing，but MUST NOT be rolled or dropped into place．Long lengths of joined piping should be
properly supported as the piping is put into place to prevent excessive stress.

After proper curing and before backfilling, the piping should be brought to within $15^{\circ} \mathrm{F}$ of the expected operating temperature. Backfilling can proceed while the piping is maintained at this temperature in order to minimize stress on the system due to thermal expansion/contraction. If this step is impractical, then stress calculations must be done to determine the loads that will be created due to constrained thermal expansion/ contraction.* These loads must then be compared to the design stress of the particular piping system.

Backfilling

Backfilling should only proceed after all solvent cement joints have been properly cured and the piping brought close to normal operating temperature, if operation will be more than $15^{\circ} \mathrm{F}$
different than the current ambient temperature. The piping should be uniformly supported over its entire length on firm, stable material.

Backfill material should be free of rocks and have a particle size no greater than 1/2." Piping should initially be surrounded with backfill to provide between 6" and 8" of cover. The backfill should be compacted using vibratory or water flooding methods. If water flooding is used, additional material should not be added until the water flooded backfill is firm enough to walk on. Backfill containing a significant amount of finegrained material, such as silt or clay, should be hand or mechanically tamped.

The remainder of the backfill should be placed and spread in approximately uniform layers to completely fill the trench without voids. Particle size for this final fill should not exceed 3." Rolling equipment or heavy tampers should only be used to consolidate the final backfill.

Product Dimension and Drawing

SCH 80 and SCH 40 UPVC Pipe

SCH 80 UPVC Pipe

Size	Standard			
	D	Tolerance	t （min）	Tolerance
1／2＂	21.34	± 0.10	3.73	＋0．51
3／4＂	26.67	± 0.10	3.91	＋0．51
$1{ }^{\prime \prime}$	33.40	± 0.13	4.55	＋0．53
1－1／4＂	42.16	± 0.13	4.85	＋0．58
1－1／2＂	48.26	± 0.15	5.08	＋0．61
2 ＂	60.32	± 0.15	5.54	＋0．66
2－1／2＂	73.02	± 0.18	7.01	＋0．84
3＂	88.90	± 0.20	7.62	＋0．91
4＂	114.30	± 0.23	8.56	＋1．02
$5{ }^{\prime \prime}$	141.30	± 0.25	9.52	＋1．14
$6 "$	168.28	± 0.28	10.97	＋1．32
8＂	219.08	± 0.38	12.70	＋1．52
10＂	273.05	± 0.38	15.06	＋1．80
12＂	323.85	± 0.38	17.45	＋2．08
$14{ }^{\prime \prime}$	355.60	± 0.38	19.05	＋2．29
$16^{\prime \prime}$	406.40	± 0.48	21.41	＋2．57
18 ＂	457.20	± 0.48	23.80	＋2．84
$20^{\prime \prime}$	508.00	± 0.58	26.20	＋3．15
24＂	609.60	± 0.79	30.94	＋3．71

（unit：mm）

SCH 40 UPVC Pipe

Size	Standard			
	D	Tolerance	t （min）	Tolerance
1／2＂	21.34	± 0.10	2.77	＋0．51
3／4＂	26.67	± 0.10	2.87	＋0．51
$1{ }^{\prime \prime}$	33.40	± 0.13	3.38	＋0．51
1－1／4＂	42.16	± 0.13	3.56	＋0．51
1－1／2＂	48.26	± 0.15	3.68	＋0．51
$2{ }^{\prime \prime}$	60.32	± 0.15	3.91	＋0．51
2－1／2＂	73.02	± 0.18	5.16	＋0．61
3＂	88.90	± 0.20	5.49	＋0．66
4＂	114.30	± 0.23	6.02	＋0．71
5＂	141.30	± 0.25	6.55	＋0．79
$6 "$	168.28	± 0.28	7.11	＋0．86
8＂	219.08	± 0.38	8.18	＋0．99
10＂	273.05	± 0.38	9.27	＋1．12
12 ＂	323.85	± 0.38	10.31	＋1．24
14 ＂	355.60	± 0.38	11.10	＋1．35
16 ＂	406.40	± 0.48	12.70	＋1．52
$18{ }^{\prime \prime}$	457.20	± 0.48	14.27	＋1．70
20	508.00	± 0.58	15.06	＋1．80
$24 "$	609.60	± 0.79	17.45	＋2．08

SCH 80 UPVC Fittings

SCH 80 UPVC 90° Elbow (SlipxSlip)

Size	Outside Dia	Socket Type			Structure Diameter	
	D0	d1	d2	I	d	G
1/2"	31.5	21.54	21.23	22.22	16.5	12.8
3/4"	38	26.87	26.57	25.4	22	15.3
$1 "$	46	33.65	33.27	28.58	28	18
1-1/4"	55	42.42	42.04	31.75	35	23
1-1/2"	60	48.56	48.11	34.93	43	26
$2 "$	75	60.63	60.17	38.1	54	32
2-1/2"	90	73.38	72.85	44.45	69	38
$3 "$	107	89.31	88.70	47.63	84	48
4"	133	114.76	114.07	57.15	105	59
5"	163.5	141.81	141.05	66.68	136	80
$6 "$	191	168.83	168.00	76.2	150	89
8"	246	219.84	218.69	101.6	200	115
10"	306.5	273.81	272.67	127	265	150
12"	364	324.61	323.47	152.4	315	180
14"	396.5	356.49	355.22	*180	346	248

Note : Do not comply with ASTM standards, if mark with *.
(unit:mm)

SCH 80 UPVC 90° Elbow (Slip \times NPT)

Size	Outside Dia	Socket Type			Structure Diameter	
	D0	d 1	d 2	।	d	NPT (thd./in)
$1 / 2^{\prime \prime}$	30.5	21.54	21.23	22.22	16	14
$3 / 4^{\prime \prime}$	38	26.87	26.57	25.4	22	14
$1{ }^{\prime \prime}$	46	33.65	33.27	28.58	28	11.5
$1-1 / 4^{\prime \prime}$	55	42.42	42.04	31.75	35	11.5
$1-1 / 2^{\prime \prime}$	60	48.56	48.11	34.93	43	11.5
2 2"	75	60.63	60.17	38.1	54	11.5

SCH 80 UPVC 90° Elbow（NPT×NPT）

Size	Outside Dia	Structure Diameter	
	D0	d	NPT（thd．／in）
$1 / 2^{\prime \prime}$	30.5	16	14
$3 / 4^{\prime \prime}$	38	22	14
$1 "$	46	28	11.5
$1-1 / 4^{\prime \prime}$	55	35	11.5
$1-1 / 2^{\prime \prime}$	60	54	11.5
$2 "$	75		$\left(\begin{array}{c}\text {＂}\end{array}\right.$

SCH 80 UPVC 45° Elbow（SlipxSlip）

Size	Outside Dia	Socket Type			Structure Diameter	
	D0	d1	d2	I	d	J
1／2＂	30.5	21.54	21.23	22.22	16.5	6.5
3／4＂	39.5	26.87	26.57	25.4	22	8
$1{ }^{\prime \prime}$	46	33.65	33.27	28.58	28	8
1－1／4＂	56	42.42	42.04	31.75	35	10
1－1／2＂	62.5	48.56	48.11	34.93	43	12
$2 "$	75	60.63	60.17	38.1	54	16
2－1／2＂	90	73.38	72.85	44.45	69	18
3＂	107	89.31	88.70	47.63	84	20
4＂	133	114.76	114.07	57.15	108	26
5＂	163.5	141.81	141.05	66.68	136	38.5
$6 "$	191	168.83	168.00	76.2	150	45
8＂	246	219.84	218.69	101.6	200	51
10＂	307	273.81	272.67	127	265	60
12＂	364	324.61	323.47	152.4	315	73
$14 "$	396.5	356.49	355.22	＊180．	350	90

Note ：Do not comply with ASTM standards，if mark with＊．（unit ：mm）

SCH 80 UPVC Coupling (Slip×Slip)

Size	Outside Dia	Socket Type			Structure Diameter	
	D0	d1	d2	I	d	L
1/2"	30.5	21.54	21.23	22.22	16.5	52
3/4"	37	26.87	26.57	25.4	22	60
$1 "$	47	33.65	33.27	28.58	28	65
1-1/4"	55.5	42.42	42.04	31.75	35	75
1-1/2"	63	48.56	48.11	34.93	42.5	79.5
$2 "$	75	60.63	60.17	38.1	54	88
2-1/2"	89	73.38	72.85	44.45	65	100
$3 "$	106	89.31	88.70	47.63	80	108
4"	133	114.76	114.07	57.15	100	126
5"	163	141.81	141.05	66.68	134.5	160
$6 "$	191	168.83	168.00	76.2	158	169
8"	246	219.84	218.69	101.6	200	220
$10^{\prime \prime}$	307	273.81	272.67	127	259	283
12"	364	324.61	323.47	152.4	308	336.5
14"	396.5	356.49	355.22	205	346	436.5
16"	454	407.54	405.89	230	396	486.5

Note : Do not comply with ASTM standards, if mark with *.
(unit:mm)

SCH 80 UPVC Coupling (Slip \times NPT)

Size	Outside Dia	Socket Type			Structure Diameter		
	D0	d 1	d 2	l	d	L	NPT(thd./in)
$1 / 2^{\prime \prime}$	30.5	21.54	21.23	22.22	16.5	52	14
$3 / 4^{\prime \prime}$	37	26.87	26.57	25.4	24.22	60	14
$1 "$	47	33.65	33.27	28.58	28	65	11.5
$1-1 / 4 "$	55.5	42.42	42.04	31.75	35	75	11.5
$1-1 / 2^{\prime \prime}$	63	48.56	48.11	34.93	42.5	79.5	11.5
$2 "$	75	60.63	60.17	38.1	54	88	11.5

SCH 80 UPVC Coupling（NPT \times NPT）

Size	Outside Dia	Structure Diameter		
	D0	d	L	NPT（thd．／in）
$1 / 2^{\prime \prime}$	30.5	16.5	52	14
$3 / 4^{\prime \prime}$	37	22	60	14
$1{ }^{\prime \prime}$	47	28	65	11.5
$1-1 / 4 "$	55.5	35	75	11.5
$1-1 / 2^{\prime \prime}$	63	42.5	79.5	11.5
2 ＂	75	54	88	11.5

（unit：mm）

SCH 80 UPVC Tee（SlipxSlip×Slip）

Size	Outside Dia	Socket Type			Structure Diameter		
	D0	d1	d2	I	d	L	H
1／2＂	32	21.54	21.23	22.22	16.5	74.5	37.25
3／4＂	37	26.87	26.57	25.4	24	85	42.5
$1{ }^{\prime \prime}$	48.5	33.65	33.27	28.58	27.5	102.5	51.5
1－1／4＂	55.5	42.42	42.04	31.75	35	115.5	57.75
1－1／2＂	63.5	48.56	48.11	34.93	41	128	64
2 ＂	75	60.63	60.17	38.1	52	146	73
2－1／2＂	92	73.38	72.85	44.45	69	173	86.5
$3 "$	109	89.31	88.70	47.63	84	197	98.5
4＂	135	114.76	114.07	57.15	109	239	119.5
5＂	163.5	141.81	141.05	66.68	136	298	149
$6 "$	191	168.83	168.00	76.2	150	336.4	168.25
8＂	246	219.84	218.69	101.6	200	439	219.5
10＂	317	273.81	272.67	127	265	560	280
12＂	364	324.61	323.47	152.4	315	660	330
14＂	396.5	356.49	355.22	＊180	346	856.5	428.25

Note ：Do not comply with ASTM standards，if mark with＊．
（unit：mm）

SCH 80 UPVC Tee (Slip \times Slip \times NPT)

Size	Outside Dia	Socket Type			Structure Diameter		
	D0	d 1	d 2	l	d	L	NPT(thd./in)
$1 / 2^{\prime \prime}$	32	21.54	21.23	22.22	16.5	74.5	14
$3 / 4^{\prime \prime}$	37	26.87	26.57	25.4	24	85	14
$1{ }^{\prime \prime}$	48.5	33.65	33.27	28.58	28	97	11.5
$1-1 / 4^{\prime \prime}$	55.5	42.42	42.04	31.75	35	115.5	11.5
$1-1 / 2^{\prime \prime}$	63.5	48.56	48.11	34.93	41	128	11.5
$2 "$	75	60.63	60.17	38.1	52	146	11.5

SCH 80 UPVC Tee (NPT×NPT×NPT)

Size	Outside Dia	Structure Diameter		
	D0	d	L	NPT(thd./in)
$1 / 2^{\prime \prime}$	32	16.5	74.5	14
$3 / 4^{\prime \prime}$	37	24	85	14
$1{ }^{\prime \prime}$	48.5	28	97	11.5
$1-1 / 4^{\prime \prime}$	55.5	35	115.5	11.5
$1-1 / 2^{\prime \prime}$	63.5	41	128	11.5
2 "	75	52	146	11.5

SCH 80 UPVC Cross(Slip \times Slip \times Slip \times Slip)

Size	Outside Dia	Socket Type			Structure Diameter		
	D0	d1	d2	1	d	G	L
1/2"	32	21.54	21.23	22.22	16.5	13	74.5
3/4"	44	26.87	26.57	25.4	22	15.4	86
$1 "$	46	33.65	33.27	28.58	28	17.8	97
1-1/4"	56	42.42	42.04	31.75	35	23	116
1-1/2"	63.5	48.56	48.11	34.93	43	26.1	128.5
$2 "$	74	60.63	60.17	38.1	54	31.8	146
2-1/2"	89	73.38	72.85	44.45	65	37.8	171
$3 "$	105	89.31	88.70	47.63	80	47.6	196
4"	132	114.76	114.07	57.15	100	58	236.5

SCH 80 UPVC Cap（Slip）

Size	Outside Dia	Socket Type			Structure Diameter
	D0	d1	d2	1	L
1／2＂	30.5	21.54	21.23	22.22	31
3／4＂	37	26.87	26.57	25.4	36
$1 "$	45.5	33.65	33.27	28.58	41
1－1／4＂	55	42.42	42.04	31.75	46
1－1／2＂	61.5	48.56	48.11	34.93	50
$2{ }^{\prime \prime}$	75	60.63	60.17	38.1	55.5
2－1／2＂	91	73.38	72.85	44.45	65.5
$3 "$	106	89.31	88.70	47.63	69.5
4＂	134	114.76	114.07	57.15	78
5＂	163.5	141.81	141.05	66.68	108
$6 "$	193	168.83	168.00	76.2	118.5
8＂	246	219.84	218.69	101.6	143
10＂	307	273.81	272.67	127	194
12＂	366	324.61	323.47	152.4	235.5
14＂	395	356.49	355.22	180	226
$16 "$	452	407.54	405.89	205	258.5

（unit：mm）

SCH 80 UPVC Y－Tee（ 45° ，Slip×Slip×Slip）

Size	Outside Dia	Socket Type			Structure Diameter		
	D0	d 1	d 2	I	d	L	H
$1 / 2^{\prime \prime}$	30.5	21.54	21.23	22.22	19	90	34
$3 / 4^{\prime \prime}$	36	26.87	26.57	25.4	24.5	105	40
1 ＂	44	33.65	33.27	28.58	31	117	42
$1-1 / 4^{\prime \prime}$	61	42.42	42.04	31.75	40	150	52
$1-1 / 2^{\prime \prime}$	61	48.56	48.11	34.93	46	150	52
$2^{\prime \prime}$	76.5	60.63	60.17	38.1	58.5	181	60
$3^{\prime \prime}$	106	89.31	88.70	47.63	74	222	68
4 ＂	132	114.76	114.07	57.15	100	277	83
6 ＂	191	168.83	168	76.2	150	393	114
$8^{\prime \prime}$	246	219.84	218.69	101.6	200	570	177

SCH 80 UPVC Male Adapter (Slip×NPT)

Size	Outside	Socket Type			Structure Diameter					
	D0	d1	d2	1	d	L	L1	B	D1	NPT
1/2"	30.5	21.54	21.23	22.22	13	50	19	36	38	14
3/4"	35	26.87	26.57	25.4	17	50	15	41	43	14
$1{ }^{\prime \prime}$	44	33.65	33.27	28.58	23	59	21	50	53	11.5
1-1/4"	54	42.42	42.04	31.75	29	61	19	60	63	11.5
1-1/2"	60	48.56	48.11	34.93	37	72	27	65	68	11.5
$2 "$	73	60.63	60.17	38.1	48	77	27	80	83	8
2-1/2"	88	73.38	72.85	44.45	57	97	40	95	100	8
3"	105	89.31	88.70	47.63	72	103	42	115	122	8
4"	132	114.76	114.07	57.15	96	116	45	145	154	8

(unit:mm)

SCH 80 UPVC Male Adapter (Slip \times BSPT)

Size	Outside Dia	Socket Type		Structure Diameter						
	D0	d 1	d 2	।	d	L	L 1	B	D1	BSPT
$1 / 2^{\prime \prime}$	30.5	21.54	21.23	22.22	13	50	19	36	38	14
$3 / 4^{\prime \prime}$	35	26.87	26.57	25.4	17	50	15	41	43	14
1 "	44	33.65	33.27	28.58	23	55	16.5	50	53	11
$1-1 / 4^{\prime \prime}$	54	42.42	42.04	31.75	29.5	61	19	60	63	11
$1-1 / 2^{\prime \prime}$	60	48.56	48.11	34.93	37	64	19	65	68	11
2 "	73	60.63	60.17	38.1	48	70.5	20.5	80	83	11
$2-1 / 2^{\prime \prime}$	88	73.38	72.85	44.45	57	90	32	95	100	11
3 "	105	89.31	88.70	47.63	72	94.5	32	115	122	11
4 "	132	114.76	114.07	57.15	96	109.5	38	145	154	11

SCAESO UPVCReducer ree（SIIpXSIIpXSITp）

Size	Outside Dia		Socket Type						Structure Diameter			
	D1	D2	d1	d2	11	d3	d4	12	L	H	d	d0
3／4＂X3／4＂X1／2＂	37	32	26.87	26.57	25.4	21.54	21.23	22.22	88	38.5	22	16.5
1 ＂X1＂X1／2＂	44	30	33.65	33.27	28.58	21.54	21.23	22.22	97	41	28	16.5
1＂X1＂X3／4＂	46	32	33.65	33.27	28.58	26.87	26.57	25.4	97	44	28	22
1＂X1＂X2＂	44	73	33.65	33.27	28.58	60.63	60.17	38.1	97	65	28	28
1－1／4＂X1－1／4＂X1／2＂	57	32	42.42	42.04	31.75	21.54	21.23	22.2	116	44.5	35	16.5
1－1／4＂X1－1／4＂X3／4＂	57	37	42.42	42.04	31.75	26.87	26.57	25.4	116	48	35	22
1－1／4＂X1－1／4＂X1＂	57	46	42.42	42.04	31.75	33.65	33.27	28.58	116	52	35	28
1－1／2＂X1－1／2＂X1／2＂	62	32	48.56	48.11	34.93	21.54	21.23	22.22	128.5	48.5	43	16.5
1－1／2＂X1－1／2＂X3／4＂	62	37	48.56	48.11	34.93	26.87	26.57	25.4	128.5	52	43	22
1－1／2＂X1－1／2＂X1＂	62	48	48.56	48.11	34.93	33.65	33.27	28.58	128.5	55.5	43	28
1－1／2＂X1－1／2＂X1－1／4＂	62	56	48.56	48.11	34.93	42.42	42.04	31.75	128.5	60	43	35
＂X2＂X1／2＂	76	32.5	60.63	60.17	38.1	21.54	21.23	22.22	146	54	54	16.5
2＂X2＂X3／4＂	76	37	60.63	60.17	38.1	26.87	26.57	25.4	146	57.5	54	22
2＂X2＂X1＂	76	46	60.63	60.17	38.1	33.65	33.27	28.58	146	60.5	54	28
2＂X2＂X1－1／4＂	76	56	60.63	60.17	38.1	42.42	42.04	31.75	146	65	54	35
2＂X2＂X1－1／2＂	76	62	60.63	60.17	38.1	48.56	48.11	34.93	146	69	54	43
2－1／2＂X2－1／2＂X1＂	91	46	73.38	72.85	44.45	33.65	33.27	28.58	171	67.5	65	28
2－1／2＂X2－1／2＂X1－1／4＂	91	54	73.38	72.85	44.45	42.42	42.04	31.75	171	72	65	35
2－1／2＂X2－1／2＂X1－1／2＂	91	62	73.38	72.85	44.45	48.56	48.11	34.93	171	75.5	65	43
2－1／2＂X2－1／2＂X2＂	91	75	73.38	72.85	44.45	60.63	60.17	38.1	171	79	65	54
3＂X3＂X1＂	107	46	89.31	88.7	47.63	33.65	33.27	28.58	196	77.5	80	28
3 ＂X3＂X1－1／4＂	107	56	89.31	88.7	47.63	42.42	42.04	31.75	196	77.5	80	35
3＂X3＂X1－1／2＂	107	62	89.31	88.7	47.63	48.56	48.11	34.93	196	82	80	43
3＂X3＂X2＂	107	75	89.31	88.7	47.63	60.63	60.17	38.1	196	86.5	80	54
3＂X3＂X2－1／2＂	107	91	89.31	88.7	47.63	73.38	72.85	44.45	196	95	80	65
4＂X4＂X1＂	133	46	114.76	114.07	57.15	33.65	33.27	28.58	237.5	89.5	100	28
4＂X4＂X1－1／4＂	133	57	114.76	114.07	60.15	42.42	42.04	31.75	237.5	90.5	100	38
4＂X4＂X1－1／2＂	133	64	114.76	114.07	57.15	48.56	48.11	34.93	237.5	97	100	43
4＂X4＂X2＂	133	75	114.76	114.07	57.15	60.63	60.17	38.10	237.5	96	100	54
4＂X4＂X2－1／2＂	133	91	114.76	114.07	57.15	73.38	72.85	44.45	237.5	104	100	65
4＂X4＂X3＂	133	107	114.76	114.07	57.15	89.31	88.7	47.63	237.5	110	100	80
5＂X5＂X2＂	163	75	141.81	141.04	66.68	60.63	60.17	38.10	237.5	114.5	132	54
6＂X6＂X1＂	191	45	168.83	168	76.2	33.65	33.27	28.58	298	115	150	29
6＂X6＂X1－1／4＂	191	54	168.83	168	76.2	42.42	42.04	31.75	336.5	120	150	38
6＂X6＂X1－1／2＂	191	60.5	168.83	168	76.2	48.56	48.11	34.93	336.5	123	150	44
6＂X6＂X2＂	191	73	168.83	168	76.2	60.63	60.17	38.10	336.5	125	150	54
6＂X6＂X2－1／2＂	191	89	168.83	168	79.20	73.88	72.85	44.45	336.5	130	150	65
6＂X6＂X3＂	191	105	168.83	168	76.2	89.31	88.7	47.63	336.5	135	150	80
6＂X6＂X4＂	191	132	168.83	168	76.2	114.76	114.07	57.15	336.5	145	150	100
8＂X8＂X2＂	246	75	219.84	218.69	101.6	60.63	60.17	38.1	439	151	200	54
8＂X8＂X3＂	246	105	219.84	218.69	101.6	89.31	88.7	47.63	439	160	200	80
8＂X8＂X4＂	246	132	219.84	218.69	101.6	114.76	114.07	57.15	439	170	200	100
8＂X8＂X6＂	246	191	219.84	218.69	101.6	168.83	168	76.20	439	194	200	150
$10 " X 10$＂X2＂	307	74	273.81	272.67	127	60.63	60.17	38.1	560	185	265	54
10 ＂X10＂X3＂	307	107	273.81	272.67	127	89.31	88.7	47.63	560	194	265	80
10 ＂X10＂X4＂	307	134	273.81	272.67	127	114.76	114.07	57.15	560	205	265	100
10＂X10＂X6＂	307	193	273.81	272.67	127	168.83	168	76.2	560	225	265	160
$10 " X 10$＂X8＂	307	248	273.81	272.67	127	219.84	218.69	101.6	560	250	265	210
12＂X12＂X2＂	364	74	324.61	323.47	152．4．	60.63	60.17	38.1	660	215	315	54
12＂X12＂X3＂	364	108	324.61	323.47	152.4	89.31	88.7	47.63	660	225	315	80
12＂X12＂X4＂	364	136	324.61	323.47	152.4	114.76	114.07	57.15	660	235	315	100
12＂X12＂X6＂	364	195	324.61	323.47	152.4	168.83	168	76.2	660	255	315	160
12＂X12＂X8＂	364	248	324.61	323.47	152.4	219.84	218.69	101.6	660	280	315	210
12＂X12＂X10＂	364	308	324.61	323.47	152.4	273.81	272.67	127	660	298	315	265
14＂X14＂X4＂	396.5	133	356.49	355.22	205	114.76	114.07	57.15	856.5	290	346	100
14＂X14＂X6＂	396.5	192	356.49	355.22	＊205	168.83	168	76.2	856.5	310	346	144
14＂X14＂X8＂	396.5	246	356.49	355.22	＊205	219.84	218.69	101.6	856.5	339	346	200
14＂X14＂X10＂	396.5	307	356.49	355.22	＊205	273.81	272.67	127	856.5	365	346	259
14＂X14＂X12＂	396.5	364	356.49	355.22	＊205	324.61	323.47	152.4	856.5	390	346	308

SCH 80 UPVC Reducer Bushing (Spig \times Slip)

Size	Outside Dia	Socket Type			Structure Diameter				
	D0	d1	d2	I	d	L	L1	D1	B
1/2"X1/4"	21.34	14.02	13.61	19	11	29	23	31	30
1/2"X3/8"	21.34	17.45	17.04	22	12	29	23	31	30
3/4"X1/2"	26.67	21.54	21.23	24	13	33	27	31	30
1"X3/8"	33.4	17.45	17.04	24	12	38	30	39.5	38
1"X1/2"	33.4	21.54	21.23	24	12	38	30	39.5	38
1"X3/4"	33.4	26.87	26.57	26	18	38	30	39.5	38
1-1/4"X1/2"	42.16	21.54	21.23	24.2	16.5	44	35	52	50
1-1/4"X3/4"	42.16	26.87	26.57	26	21	44	35	52	50
1-1/4"X1"	42.16	33.65	33.27	29.5	28	44	35	52	50
1-1/2"X1/2"	48.26	21.54	21.23	24.2	16.5	47	38	58	55
1-1/2"X3/4"	48.26	26.87	26.57	26	21	47	38	58	55
1-1/2"X1"	48.26	33.65	33.27	29.5	28	47	38	58	55
1-1/2"X1-1/4"	48.26	42.42	42.04	32.5	35	47	38	58	55
2"X1/2"	60.33	21.54	21.23	24.2	16.5	52	42	68	65
2"X3/4"	60.33	26.87	26.57	26	21	52	39	68	65
2"X1"	60.33	33.65	33.27	29.5	28	52	39	68	65
2"X1-1/4"	60.33	42.42	42.04	32.5	35	52	39	68	65
2"X1-1/2"	60.33	48.56	48.11	35.5	43	52	39	68	65
2-1/2"X1-1/4"	73.03	42.42	42.04	32.5	36	60	48.5	85	80
2-1/2"X1-1/2"	73.03	48.56	48.11	35.5	43	60	48.5	85	80
2-1/2"X2"	73.03	60.63	60.17	39.1	52	60	48.5	85	80
3"X1-1/2"	88.9	48.56	48.11	35.5	43	65	51	105	99
3"X2"	88.9	60.63	60.17	39.1	54	65	51	105	99
3"X2-1/2"	88.9	73.38	72.85	47.5	65	65	51	105	99
4"X2"	114.3	60.63	60.17	41.1	54	75	60.5	132	125
4"X2-1/2"	114.3	73.38	72.85	47.5	65	75	60.5	132	125
4"X3"	114.3	89.31	88.7	50.6	80	75	60.5	132	125
5"X4"	114.3	114.76	114.1	60.2	100	82	69.6	150	145
6"X2"	168.28	60.63	60.17	41.1	51	89	76.5	191	180
6"X3"	168.28	89.31	88.7	50.6	80	89	76.5	191	180
6"X4"	168.28	114.76	114.1	60.2	105	89	76.5	191	180
6"X5"	168.28	114.81	114.1	69.5	125	89	76.5	191	180
8"X4"	219.1	114.76	114.1	60.5	100	120	104.6	246	235
8"X6"	219.1	168.83	168	79	150	120	104.6	246	235
10"X3"	273.05	89.31	88.7	50.6	80	148	130	290	280
10 " 44 "	273.05	114.76	114.1	60.2	105	148	130	290	280
10"X6"	273.05	168.83	168	79.2	150	148	130	290	280
10"X8"	273.05	219.84	218.69	105	200	148	130	290	280
12"X4"	323.85	114.76	114.1	60.2	100	175	155	345	330
12"X6"	323.85	168.83	168	79.2	150	175	155	345	330
12"X8"	323.85	219.84	218.69	105	200	175	155	345	330
12"X10"	323.85	273.81	272.67	130	245	175	155	345	330
14"X10"	355.6	324.61	323.47	130	245	200	180	380	360
14"X12"	355.6	324.61	323.47	135	300	200	180	380	360

(unit:mm)

SCH 80 UPVC Reducer Bushing（Spig×NPT）

Size	Outside Dia	Structure Diameter						
	D0	d	L	L 1	B	D 1	NPT（thd．／in）	
1／2＂X1／4＂	21.34	11	29	23	30	31	18	
1／2＂X3／8＂	21.34	12	29	23	30	31	18	
3／4＂X1／2＂	26.67	13	33	27	30	31	14	
1 ＂X3／8＂	33.4	12	38	30	38	39.5	18	
1＂X1／2＂	33.4	12	38	30	38	39.5	14	
1 ＂X3／4＂	33.4	18	38	30	38	39.5	14	

（unit：mm）

SCH 80 UPVC Reducer Coupling（Slip \times Slip）

Size	Outside Dia		Socket Type						Structure Diameter		
	D1	D2	d1	d2	11	d3	d4	12	d	L	L1
3／4＂X 1／2＂	37	30.5	26.87	26.57	25.4	21.54	21.23	22.22	16.5	57.5	30
1＂X 1／2＂	47	30.5	33.65	33.27	28.58	21.54	21.23	22.22	16.5	58	36
1＂$\times 3 / 4$＂	47	35	33.65	33.27	28.58	26.87	26.57	25.4	21	61	36
1－1／4＂X 1／2＂	55.5	30.5	42.42	42.04	31.75	21.54	21.23	22.22	16.5	62.5	42
1－1／4＂X 3／4＂	55.5	35	42.42	42.04	31.75	26.87	26.57	25.4	21	65	42
$1-1 / 4^{\prime \prime} \times 1{ }^{\prime \prime}$	55.5	44	42.42	42.04	31.75	33.65	33.27	28.58	28	68.5	42
1－1／2＂X 1／2＂	63	30.5	48.56	48.11	34.93	21.54	21.23	22.22	16.5	65	44
1－1／2＂$\times 3 / 4{ }^{\prime \prime}$	63	35	48.56	48.11	34.93	26.87	26.57	25.4	21	68	44
1－1／2＂$\times 1{ }^{\prime \prime}$	63	44	48.56	48.11	34.93	33.65	33.27	28.58	28	71	44
1－1／2＂${ }^{\text {¢ }}$ 1－1／4＂	63	54	48.56	48.11	34.93	42.42	42.04	31.75	35	75	44
2＂X 1／2＂	75	30.5	60.63	60.17	38.1	21.54	21.23	22.22	16.5	68	49.5
2＂X 3／4＂	75	35	60.63	60.17	38.1	26.87	26.57	25.4	21	71	49.5
2＂X 1＂	75	44	60.63	60.17	38.1	33.65	33.27	28.58	28	74.5	49.5
2＂X 1－1／4＂	75	54	60.63	60.17	38.1	42.42	42.04	31.75	35	78.5	49.5
2＂X 1－1／2＂	75	60	60.63	60.17	38.1	48.56	48.11	34.93	42.5	82.5	49.5

（unit：mm）

Size	Outside Dia		Socket Type						Structure Diameter		
	D1	D2	d1	d2	11	d3	d4	12	d	d0	L
2－1／2＂X1＂	89	44	73.38	72.85	44.45	33.65	33.27	28.58	65	27.5	117.5
2－1／2＂X 1－1／2＂	89	61	73.38	72.85	44.45	48.56	48.11	34.93	65	42.5	124
2－1／2＂X2＂	89	73	73.38	72.85	44.45	60.63	60.17	38.10	65	54.5	127
$3^{\prime \prime} \times 1-1 / 2^{\prime \prime}$	106	61	89.31	88.70	47.63	48.56	48.11	34.93	81	42.5	136
$3 " \times 2$＂	106	73	89.31	88.70	47.63	60.63	60.17	38.10	81	54.5	140
3＂X 2－1／2＂	106	89	89.31	88.70	47.63	73.38	72.85	44.45	81	65	147
4＂$\times 2$＂	133.5	73	114.76	114.10	57.15	60.63	60.17	38.10	－	54.5	158.5
4＂$\times 2-1 / 2^{\prime \prime}$	133.5	89	114.76	114.10	57.15	73.38	72.85	44.45	－	65	158.5
4＂$\times 3$＂	133.5	106	114.76	114.10	57.15	89.31	88.70	47.63	－	81	158.5

SCH 40 UPVC Fittings

SCH 40 UPVC Coupling (SlipxSlip)

Size	Outside Dia	Socket Type			Structure Diameter	
	D0	d 1	d 2	l	d	L
$1 / 2^{\prime \prime}$	27.5	21.54	21.23	17.8	18	38.6
3/4"	33.5	26.87	26.57	18.7	22.5	40.5
$1{ }^{2}$	41.7	33.65	33.27	22.7	29	48.5
$1-1 / 4^{\prime \prime}$	50.2	42.42	42.04	24.3	38	57.5
$1-1 / 2^{\prime \prime}$	56.8	48.56	48.11	28.3	43.5	60
$2 "$	69	60.63	60.17	29.9	55.5	63.5
$2-1 / 2^{\prime \prime}$	84.2	73.38	72.85	45	67.5	95
3"	100.8	89.31	88.70	48.1	83.5	101.2
$4 "$	127.3	114.76	114.07	51.3	108.5	107.6

Note : Do not comply with ASTM standards, if mark with *.
(unit:mm)
SCH 40 UPVC 90° Elbow (Slip \times Slip)

Size	Outside Dia	Socket Type			Structure Diameter	
	D0	d 1	d 2	l	d	G
$1 / 2^{\prime \prime}$	27.5	21.54	21.23	17.8	18	12.7
$3 / 4^{\prime \prime}$	33.6	26.87	26.57	18.7	22.5	14.8
1 1"	41.7	33.65	33.27	22.7	29	18.3
$1-1 / 4^{\prime \prime}$	50.5	42.42	42.04	24.3	38	22.7
$1-1 / 2^{\prime \prime}$	56.8	48.56	48.11	28.3	43.5	25.7
$2 "$	69	60.63	60.17	29.9	55	32
$2-1 / 2^{\prime \prime}$	84.2	73.38	72.85	45	67.5	39
$3 "$	100.8	89.31	88.70	48.1	83.5	46.5
$4 "$	127.3	114.76	114.07	51.3	108.5	59.7
$16 "$	434.5	407.58	405.87	$* 205$	376	240

Note : Do not comply with ASTM standards, if mark with *.
(unit:mm)

SCH 40 UPVC 45° Elbow（Slip \times Slip）

Size	Outside Dia	Socket Type			Structure Diameter	
	D0	d 1	d 2	l	d	J
$1 / 2^{\prime \prime}$	27.5	21.54	21.23	17.8	18	6.4
$3 / 4$＂	33.1	26.87	26.57	18.7	22.5	8
1 ＂	40.9	33.65	33.27	22.7	29	8
$1-1 / 4$＂	50.1	42.42	42.04	24.3	38	9.6
$1-1 / 2^{\prime \prime}$	56.5	48.56	48.11	28.3	43.5	11.2
2 ＂	69	60.63	60.17	29.9	55	16
$2-1 / 2^{\prime \prime}$	84.2	73.38	72.85	45	67.5	18
3＂	100.8	89.31	88.70	48.1	83.5	20
$4 "$	127.3	114.76	114.07	51.3	108.5	25.4
$16^{\prime \prime}$	434.5	407.58	405.87	$* 205$	376	120

Note ：Do not comply with ASTM standards，if mark with＊．
（unit：mm）

SCH 40 UPVC Tee（Slip \times Slip \times Slip）

Size	Outside Dia	Socket Type			Structure Diameter		
	D0	d 1	d 2	I	d	L	H
$1 / 2^{\prime \prime}$	27.5	21.54	21.23	17.8	18	61	30.5
3／4＂	33.6	26.87	26.57	18.7	22.5	67	33.5
$1 "$	41.7	33.65	33.27	22.7	29	82	41
$1-1 / 4 "$	50.5	42.42	42.04	24.3	38	94	47
$1-1 / 2^{\prime \prime}$	56.8	48.56	48.11	28.3	43.5	108	54
$2 "$	69	60.63	60.17	29.9	55	124	62
$2-1 / 2^{\prime \prime}$	84.2	73.38	72.85	45	67.5	168	84
3＂	100.8	89.31	88.70	48.1	83.5	189.2	94.6
$4 "$	127.3	114.76	114.07	51.3	108.5	222	111
$16 "$	434.5	407.58	405.87	$* 205$	376	890	445

Note ：Do not comply with ASTM standards，if mark with＊．
（unit：mm）

Note ：
1．All of Hershey Valves molded fittings meet ASTM standards in dimension and performance．While their dimensions complying with ASTM standards，Hershey Valve reserves the right to change or modify their designs without further notice．

2．Data shown in the tables are typical values which meet ASTM standards．For detail information of ASTM values，please see ASTM 2464， 2466 and 2467.

Fabricated UPVC Fittings

Coupling

Size :14"~24"

45° Elbow

Size : 14"~24"

Tee

Size :14"~24"

90르․

Size : 14"~24"

鐶犋塑胲

Size ：8＂～24＂

Reducer Cross

Size ：8＂～24＂

Reducer Tee

Size ：12＂～ 24 ＂

Reducer Coupling

Size：6＂～24＂

Note ：Fabricated fittings are custom made items and they are available upon request．

[^0]: ＊The data provided in this table is for reference only．

